A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification

نویسندگان

  • Chein-I Chang
  • Qian Du
  • Tzu-Lung Sun
  • Mark L. G. Althouse
چکیده

Band selection for remotely sensed image data is an effective means to mitigate the curse of dimensionality. Many criteria have been suggested in the past for optimal band selection. In this paper, a joint band-prioritization and band-decorrelation approach to band selection is considered for hyperspectral image classification. The proposed band prioritization is a method based on the eigen (spectral) decomposition of a matrix from which a loading-factors matrix can be constructed for band prioritization via the corresponding eigenvalues and eigenvectors. Two approaches are presented, principal components analysis (PCA)-based criteria and classification-based criteria. The former includes the maximum-variance PCA and maximum SNR PCA, whereas the latter derives the minimum misclassification canonical analysis (MMCA) (i.e., Fisher’s discriminant analysis) and subspace projection-based criteria. Since the band prioritization does not take spectral correlation into account, an information-theoretic criterion called divergence is used for band decorrelation. Finally, the band selection can then be done by an eigenanalysis-based band prioritization in conjunction with a divergence-based band decorrelation. It is shown that the proposed band-selection method effectively eliminates a great number of insignificant bands. Surprisingly, the experiments show that with a proper band selection, less than 0.1 of the total number of bands can achieve comparable performance using the number of full bands. This further demonstrates that the band selection can significantly reduce data volume so as to achieve data compression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery

Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...

متن کامل

Hyperspectral Imaging and Analysis for Sparse Reconstruction and Recognition

Hyperspectral imaging, also known as imaging spectroscopy, captures a data cube of a scene in two spatial and one spectral dimension. Hyperspectral image analysis refers to the operations which lead to quantitative and qualitative characterization of a hyperspectral image. This thesis contributes to hyperspectral imaging and analysis methods at multiple levels. In a tunable filter based hypersp...

متن کامل

Spatial Entropy Based Mutual Information in Hyperspectral Band Selection for Supervised Classification

Hyperspectral band image selection is a fundamental problem for hyperspectral remote sensing data processing. Accepting its importance, several information-based band selection methods have been proposed, which apply Shannon entropy to measure image information. However, the Shannon entropy is not accurate in measuring image information since it neglects the spatial distribution of pixels and i...

متن کامل

Supervised Band Selection for Optimal Use of Data from Airborne Hyperspectral Sensors

This paper presents a practical supervised band selection procedure for airborne imaging spectrometers and Maximum Likelihood classification (MLC) as data application. The output band set is optimal in band location, width and number regarding the MLC accuracy of the classification task. The supervised algorithm is based on feature selection and requires a user-defined class set. For two given ...

متن کامل

Band Selection Using Independent Component Analysis for Hyperspectral Image Processing

Although hyperspectral images provide abundant information about objects, their high dimensionality also substantially increases computational burden. Dimensionality reduction offers one approach to Hyperspectral Image (HSI) analysis. Currently, there are two methods to reduce the dimension, band selection and feature extraction. In this paper, we present a band selection method based on Indepe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Geoscience and Remote Sensing

دوره 37  شماره 

صفحات  -

تاریخ انتشار 1999